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Temporal Topos and U-Singularities

      Goro C. Kato 
Mathematics Department 

California Polytechnic State University 
     San Luis Obispo, CA 93407 

U.S.A. 

Abstract 

Several papers and books by C. Isham, C.Isham-A. Doering, F. Van Oystaeyen, A.
Mallios-I. Raptis, C. Mulvey, and Guts and Grinkevich, have been published on the methods
of categories and sheaves to study quantum gravity.  Needless to say, there are well-written
treatises on quantum gravity whose methods are non-categorical and non-sheaf theoretic.  This 
paper may be one of the first papers explaining the methods of sheaves with minimally required
background that retains experimental applications.

Temporal topos (t-topos) is related to the topos approach to quantum gravity being 
developed by Prof. Chris Isham of the Oxford-Imperial research group (with its foundations in
the work of F. W. Lawvere).  However, in spite of strong influence from papers by Isham, our 
method of t-topos is much more direct in the following sense.  Our approach is much closer to
the familiar applications of the original algebraic geometric topos where little logic is involved.  

The distinguishable aspects of this paper “Temporal Topos and U-Singularity” from other
topos theorists’ appoaches are the following.  For a particle, we consider a presheaf associated 
with the particle.  By definition, a presheaf is a contravarinat functor; however, in the t-topos
theory, such a presheaf need not be defined for every object of a t-site over which the topos of
presheaves are defined.  When such an associated presheaf is not defined (or non-reified), we
say that the presheaf (the particle) is in ur-wave state.  Therefore, the duality is already 
embedded in our t-topos theory.  We also have the notion of a (micro) decomposition of a 
presheaf  (a particle) to obtain microcosm objects.  Another important aspect of our approach
is the associated space and time sheaves for a given particle-presheaf. The sheaves associated
with space, time, and space-time are treated differently from a particle associated presheaf.
Namely, Yoneda Lemma and its embedding are crucial for formulating and capturing the
nature of space-time. In this formulation, the space and time sheaves would not exist unless a
particle (presheaf) exists.  Such a non-locality nature as the EPR type non-locality is also 
embedded in t-topos.  Applications to singularities (a big bang, black holes, and subplanck
objects) are formulated in terms of universal mapping properties of direct limit and inverse 
limit in category theory.  Furthermore, the uncertainty principle is formulated through the 
concept of a micro-morphism in t-site.  Our t-topos theoretic approach enables us to
formulate a light cone in macrocosm and also in microcosm. However, such a light cone in
microcosm has non-reified space-time regions because of the uncertainty principle (a miro­
morophsim). 



 
  

 
 
 

 
 
 

  
  

 

 
 

 

  
 

  
  

 
 

 
 

 
 

 
 

  
 

 
  

 
 

 

 
 

  
   

  
 
 

 Prologue
 

Introducing a categorical approach to quantum field theory will avoid divergent 
expressions, e.g., for the total amplitude of a quantum process. One may also take
categorical and sheaf theoretic methods as avoidance of the Dedekind-Cantor continuum
approach to physical entities. The Dedekind-Cantor type continuum is one of the sources
of infinites in physical theory.

The concept of a sheaf has been effectively used for the foundations of quantum
physics and quantum gravity especially among people in the C. Isham school at Imperial 
College as in [1], [2], [3], Mallios’ school as in [4], [5], and Penrose as twistor cohomology
of sheaves in [6]. Even though direct connections to our temporal topos method are not 
known, a few names should be mentioned: Mulvey, Heller, and Sasin.  In particular, the
noncommutative geometry approach, called virtual topology of F. Van Oystaeyen, seems
to be quite relevant to our work (See the treatise Virtual Topology and Functor Category,
Tayler and Francis Group, 2007).  

See [7], [8], [9] for developments and the history of sheaf theory in the theory of
holomorphic functions in several complex variables, algebraic analysis, and algebraic
geometry.

In this article We will summarize what we have obtained in the series on the 
fundamentals of the theory of temporal topos following [10], [11], [12]. Our method of
temporal topos, referred to as t-topos for short, differs from Isham’ s and Mallios’ schools,
and also from the Russian school directed by A. K. Guts and E. B. Grinkevich. However, 
we should acknowledge the motivational influence coming especially from the paper [1] by
C. Isham. As we have mentioned earlier, compared with other approaches to quantum
gravity via sheaves, our method is a more direct and straightforward application of
commonly used familiar algebraic geometric (categorical-cohomological) methods. That
is, in order to express the changing state of a particle over a time period, the associated
presheaf representing the particle is “parameterized” by an object in a t-site. We call such
an object in t-site a generalized time period. Namely, we introduce such a state controlling
parameter as a generalized time period-object in the t-site to keep track of varying states of
a particle. (See below for more on t-site.)

Our goals include studying the topos of presheaves (t- topos) defined on a t-site and
its applications to quantum gravity. However, in t- topos theory, a presheaf is not always
defined on every object in a t-site.  When it is defined, a presheaf in t-topos theory satisfies
the properties of a contravariant functor.  This is one of the issues relevant to the Kochen-
Specker theorem in [2] and [3].  The t-topos theory is a background independent theory
and also a scale independent theory * (See (*) below.) in the following sense: all the 
concepts are defined in our theory in terms of presheaves associated with a macro or micro
particle together with the associated space, time, and space-time sheaves. For a particle
state in the usual sense, we associate a presheaf m so that each particle state of the particle is 
represented by the reified pair of the presheaf m and an object V (which is called a 
generalized time period V) in a site S. [At the Second International Conference on
Theoretical Physics and Topos, held at Imperial College, London, 2003, (*) C. Isham said
(In the definitions in t-topos theory) “ --- a particle can be replaced by an elephant.”]  Such 



  
  

 
  

 

  

 
 

 
 

   

  

 

 

    

 

      
   

 

   

   
    
     

  

   

   

    
      

  
 

 
     

   
    

    

    

 

  

 

a site as used in t-topos theory is called the t-site.
Recall that a site in general is a category with a Grothendieck topology as defined in

[9], [14], [15].  An ur-particle state of the presheaf m associated with a particle is expressed 
as m(V) as an object in a product category � � � � � � � ∏Cα .    (0.0) 

α∈Δ 

(See [10], [11], [14].)  One of the reasons for introducing the product category indexed by
a finite set is that for each physical quantity possibly measured, we need a category where
such a measurement (interpreted as a morphism in t-topos) can take place. Following the

terminology used among topos theorists, the category Ŝ �of presheaves on a site S (with a 

restricted sense as follows) is�said to be a temporal topos or simply t-topos. Namely, Ŝ �is 
the category of contravariant functors from the t-site S to ∏Cα .  However, such a t­

α∈Δ 

topos theoretic presheaf is more restricted than the usual definition of a presheaf. That is, 

m(V )  may not be defined for every pair of an object m of Ŝ �and an object V of S. 

Definition  A presheaf m, an object of Ŝ , and a generalized time period V, i.e. an 
object of S, are said to be reified (or compatible) when m(V )  is defined. 

Hence, an object of the t-topos Ŝ  may be more appropriately called an ur-presheaf

(or t-presheaf) rather than just a presheaf. Let m and P be presheaves, i.e., objects of Ŝ . 
We say that m is observed (measured) by P over a generalized time period V (i.e. an object 
of the t-site S), when there exists a morphism from m(V )  to P(V ) &��For a presheaf m 

associated with a particle, there are the space, time, and space-time (pre)sheaves κ $ m �m τ
and ω �associated with m. The associated (pre)sheaves with space, time and space-time dom 

not exist without the particle.  (See the forthcoming [17] for a complete description of t­
topos theory, especially the treatment of space-time sheaf ω = (κ ,τ ) .)

Also recall that a presheaf m is said to be in a particle ur-state (or ur-particle state) if 
there exists an object V in S such that m(V ) is defined. Otherwise, m is said to be in a wave 

ur-state (or ur-wave state).  For example, when such an object V in the t-site cannot be 
specified between the two as in the case of double slit experiment, m is said to be in a wave 
ur-state. (See [15] for the application of t-topos to a double slit experiment.) Recall also
that m and m’ are ur-entangled when presheaves m and m’ are defined always on the same 
objects of S. (See [10], [16] for connections to EPR type non-locality.)

In this paper, for a presheaf m representing a particle and for an object V in the t-site, 
a decomposition of m and a covering of V play major roles in defining a notion of entropy. 

For a presheaf m in Ŝ , consider a (micro)decomposition of m by subpresheaves mj : 

∏mj ,             (0.1) 
j ∈J������������������ m = 



  

 

 
  

 

 
 

 
    
 
  

 
 
 
 
 

 
 

 
 

   

 
   

     
  

       
   

 
 

  
     

  

  
   

 

and let 

⎯ Vk } �� � +-&/,����������������� {V ⎯→

be a covering of V by a family of objects in the sense of [9], [13], [14]. We will define the
various concepts of entropies as the numbers of defined (reified) pairs of those mj and Vk . 

Among all of the decompositions and coverings of m and V as in (0.1) and (0.2), respectively, 
we have compatible pairs m j (Vk ). We will define a notion of entropy of the state m(V) as a 
number of such compatible pairs in the next section. For a microdecomposition, see [11]. 

1 Methods of Temporal Topos 

We have introduced notions of a microdecomposition and a micromorphism. For
example, the concept of a t-topos theoretic light cone is viewed as a light cone with holes
where non-reified states occur. This is because the notion of a micromorphism gives the
impossibility of factorization between two states corresponding to two generalized time
periods. Together with a microdecomposition and a further refinement of a covering in
what will follow, we get similar “unreified” pairs of particle-decomposed presheaves and
covering-decomposed objects in a t-site.  Such a state as unmatched pairs of particle 
presheaves and objects in the t-site is considered as an ultra-microcosm, and the state is
closer to “u-singularity”. Even though the method of t-topos is a more kinematical and
qualitative theory, the dynamical aspect is embedded in the space and time sheaves.
Namely, space-time sheaf ω = (κ ,τ )  is associated with a particle. Hence, for example, 

when the curvature of space-time ω = (κ ,τ )  caused by m (representing a particle withm m m 

mass) is measured, the fundamental composition principle can be used to assign a value.  
(See what will follow.)  Another view of a dynamical aspect of t-topos is the following. 
When two particles, represented by presheaves m and m’ are close enough to influence 
space-time in the common “region” of two space-time sheaves, then one can associate the 
two gravitationally interacting particles with the “product space-time” of the associated 
space-time sheaf induced by m and m’. (See [17] for details.) 

Let a presheaf m associated with a particle be observed twice over generalized time 
periods V and U. Consider the case where m is observed over V first and then over U. That 
is, time τ (V ) precedes time τ (U ) �in the usual classical linearly ordered sense. Then there m m 

exists a morphism g from V to U in the t-site S. Such a morphism g is said to be a linearly 
t-ordered morphism. Note that not every morphism from V to U in S represents such a 
linear temporal order in the above sense.  This is one of the reasons for introducing the
concept of a site rather than just a topological space.  Recall that an inclusion is the only
morphism, if it exists, between two open sets of a topological space.
 Suppose that m is measured (or observed) by P over V, then there exists a morphism 
sV from m(V) to P(V) which is the definition of an observation (or measurement). 

Categorically speaking, this means that s  is a natural transformation (a morphism of 
functors) from m to P. Then we have the following diagram: 



 

 

 
  

   
     

   

 
 

 

   

 

  

 

   

      

  
 

 

     
 
 
 

 
 

 
   

  

   

←m(g)⎯⎯⎯ m(U )� � � � � ����������� m(V ) ��� � � �+.&.,���↓���������� sV �m(g) 

�P(V ) 

where the composition sV � m(g) �in the above diagram should be understood as the 

measurement of m(U) by measuring m(V) by P(V).  Namely, the image of the composite 
morphism sV � m(g) �is the amount of information P can obtain on the future state m(U) 

by measuring the state of m over V.  According to the quantum mechanical way of
thinking, the phrase that a particle can�“be”�in several different locations at�“the same time”� 
has been used.  However, such expressions need to be examined more carefully since t­
topos gives more precise descriptions of such issues.  That is, for a particle to be at a place, 
an object of t-site must be chosen.  Then the particle must not be in a wave ur-state since 
an object in S has been specified.  Namely, an expression as “An electron moves from point� 
A�to point�B�taking all available paths simultaneously” assumes the following.  If such an 
electron were observed in addition to the two states corresponding to�A�and�B$�then there 

would be a non-trivial factorization of�V ⎯→ � � g1 via {W } in the t-side, g⎯ U , i.e., g = g2 

corresponding to�A�and�B&��Then in the diagram��� 
V ����� ⎯→g⎯ �����U 

�����g1 ��������g2 
� 

�����������W� $� � � +.&/,
g1 g2V ⎯ → �and W ⎯ �U �would become non-trivial linearly t-ordered morphisms. �In⎯ �W � ⎯ →

particular, if such a� ⎯ �U is a micromorphism, then there does not exist such a proper V � ⎯→
factorization.  The number of such paths between�A�and�B�(linearly t-ordered) are precisely
equal to the number of non-trivial factorizations by linearly t-ordered morphisms of� 
V � ⎯→ &�⎯ �U� For a given state m(V ) �of m over V, assume that there exists an object V '  in the  t-

site S  so that τ (V ')  precedes τ (V ) . Namely, V ' ⎯→ �is linearly t-ordered.m m ⎯ V 
Continue the process to obtain a sequence of objects, generalized time periods, of S. That 
is, we get 

− − −→V " ⎯→ ⎯ V .⎯ V ' ⎯→   (1.3) 

A definition of a t-topos theoretic light cone is given in [11]. We will give another
definition of a light cone using the presheaf associated with a photon.

 Definition 1.1 Let γ be a photon presheaf which is observed over a generalized time 

period V. Then consider all the light cone sequences with respect to the state γ (V ) $���� 
going through V 



 

   

 

   

  
 

 

  

 
 

   

 
 
   
      
 
  

  

 
 
       

 
    

 

 

   
 

 
 

 
  

 
 

 
 

− − −→ γ (V2 ) →γ (V1) →γ (V ) →γ (V 1) →γ (V 2 ) − − − , (1.4) 

where  

− − − ←V2 ←V1 ←V ←V 1 ←V 2 ←− − − � � � +.&1,�� 
is an arbitrary sequence of linearly t-ordered objects in S. In terms of space-time sheaf, we 
have � � − − −→ω (V2 ) →ω (V1) →ω (V ) →ω (V 1) →ω (V 2 ) − − −  (1.6) 

associated with γ . 

Note that sequence (1.4) emphasizes the states of γ , and sequence (1.6) emphasizes 

the corresponding space-time. 

2 Entropy and Limits 

We will define the notion of an entropy for a decomposition as in (0.1) of m and for 
a covering as in (0.2) of V of objects in the t-topos Ŝ and t-site S, respectively. 
Furthermore, we can continue decomposing �������
�������������
������������� as 

∏mj ⎯∏mjk ⎯ − − − .⎯→ ⎯→ (2.1) 
j∈J k ∈K 

 Definition 2.1 The t-entropy of the state m(V) for a micro-decomposition ∏mj 
j∈J 

and a covering {V ⎯→ }k∈K of V is defined by the number of compatible (reifiable)⎯ Vk �
pairs {mj (Vk )} j ∈J ,k∈K .

 Definition 2.2 The formal entropy of m(V) for the decomposition and the covering 
is defined by the product of cardinalities of index sets J and K. 

Definition 2.3  The absolute entropy of the state m(V) is defined as the maximum 
number of compatible pairs for all decompositions and coverings of m and V, 
respectively. 

Note 2.4 Among the compatible pairs in the definitions of entropies, the 
corresponding generalized time periods need not be linearly t-ordered. Note also that the 
rest of the pairs between the decomposition and the covering are the collection of non-
reified (non-measurable) particle associated presheaves.  

Since a covering {Vk ←⎯ }l ����Vk �of a covering {V ←⎯ }k ���V is a⎯ Vk ,� l ⎯ Vk 



 
    
  

 
 

 
 

 
 

 

 
 
 
       

 

 

 

covering {V ←⎯  (See [9, 13, 14].), we get a sequence for V,⎯ Vk ,� l }k ,l

{V ←⎯ }k ⎯ {V ←⎯ }k ,l (2.2)⎯ Vk ⎯→ ⎯ Vk ,� l → − − − . 

Next, we will consider limits of such sequences as in (2.1) and (2.2) and sequences as in 
(1.5, 1.6). 

 Definition 2.5 A presheaf m is said to be a fundamental presheaf when a 
decomposition in the sense of the sequence (2.1) becomes stable. That is, further 
decompositions consist of only several isomorphic objects. Namely, all the components 
of a decomposition are isomorphic presheaves. 

Definition 2.6 An object V of the t-site S is said to be fundamental when a covering 
of V consists of all isomorphic objects to V itself. 

 Remarks 2.7  (1) A fundamental presheaf should be associated with elementary 
particles. Such a pair of a fundamental presheaf and a fundamental object of t-site is said 
to be a fundamental pair. 

(2) The notion of a direct limit (inverse limit) is defined by a universal mapping 
property as in [9,13,14]. In this sense, such a notion as a direct (or invese) limit is an 
ultimate and universal object. Therefore, we propose the following definitions. The 
direct limit of the sequence (2.1) is said to be an ur-subplanck decomposition of m since 
sequence (2.1) is obtained by decomposing each presheaf in each step. Similarly, the 
direct limit of sequence (2.2) is said to be an ur-subplanck covering of V. 

(3) As such a decomposition in (2.1): 

∏mj ⎯→∏mjk ⎯→⎯ ⎯ − − −
j∈J k ∈K � 

approaches the direct limit of this sequence, more fundamental presheaves appear. Then a 
fundamental presheaves mα �associated with short-lived particles cause severe curvatures 
of space-time in microcosm. Note that being short-lived means the smallness of the 
assigned value via FUNC of the corresponding time sheaf τ ) ���
��
��
�
������mα 

(Vlim 
→ 

corresponding Vlim after sufficient refinements of the covering with more fundamental 
→

objects of S: 

{V ←⎯⎯ Vk }k ⎯ {V ←⎯ }k ,l → − − −  )⎯→ ⎯ Vk ,� l� � � 
as in (2.2). Note also that the entropy of such a condition is also small, because the 
number of reified fundamental pairs of presheaves and objects of S decreases, i.e., there 
are more isomorphic objects in Ŝ �and S, respectively. One might associate this t-topos 
theoretic interpretation of the ultra-microscopic state of short-lived fundamental 
presheaves {mα}α �and fundamental objects {Vlim} �of the t-site (i.e., generalized time 
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periods) with the foam-like condition. For the connections to other singularities, see 
Remark 3.1(2) in the next section and the Epilogue, where we introduce the notions of ur-
big bangs of the 0th stage and (-1)st stage, respectively. 

3 U-Singularities

 Let be mΩ a fundamental presheaf of Ŝ . Assume that mΩ  was observed at a 
generalized time period V of S. Then we can consider such a situation as we have 
considered earlier. Namely, for this given state of mΩ over V, i.e.,� mΩ (V ) , assume that 

there exists an object V '  in the t-site S  so that τ (V ')  may precede τ (V ) . Namely,mΩ mΩ 

V ' ⎯→ �is linearly t-ordered.  Continue this process successively to obtain a sequence of⎯ V 
objects, i.e., generalized time periods of S. That is, as we evaluate at the (contravariant)
fundamental presheaf mΩ $�we get the following sequence 

− − − ← mΩ(V ")←⎯ ⎯ mΩ(V ) .⎯ mΩ(V ')←⎯ (3.1) 

def 

The direct limit mΩ (Vlim ) = lim ⎯ mΩ(V ')←⎯ �of (3.1) is(− − − ← mΩ(V ")←⎯ ⎯ mΩ(V ))
⎯← ⎯→

said to be the inverse u-singularity of the state mΩ (V ) . On the other hand, in Remark (3), 

)} �is said to be the direct u-singularity of the state m(V ) . By the very definition of{mα (Vlim 
→ 

a direct limit, the corresponding space-time ωmΩ 
(Vlim ) $ and in particular τmΩ 

(Vlim ) $��
������
← ←��������
�
��"�
�"����
����
����
������&��	��
���
�������������!�����������
��
�������������
���������
�����������
���������������&�����
��
�
�

��� ���������
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 Epilogue 

Our basic approach toward quantum behavior of a particle (elementary or not) 
is to capture an ur-particle state as a reified pair of the associated presheaf m and an 
object V of t-site. Generally speaking, for a macrocosm presheaf, there are more 
decompositions, and for a macrocosm covering, there are further refinement coverings. 
The t-topos theory is a scale independent theory not only because all the concepts are 
defined independently of the scales, but also in the following sense. For example, for a 
given morphism in the t-site, the shorter the sequence of the factorization of the 
morphism is, the more microscopic the morphism. A similar statement can be asserted 
for a presheaf. 
 When presheaf m does not have an object to be reified, m is said to be in an ur­
wave state. This ur-wave state includes the case of the double slit experiment because 
such a choice of one object of the t-site can not be determined. When applied to the 
notion of a light cone of a particle in a microcosm, such a t-topos theoretic microscopic 
light cone is a light cone with missing states where the associated particle presheaves do 
not have objects from t-site to be reified. One of the missing elements in our approach to 
t-topos is the aspect of dynamics. However, in the t-topos theory, there is a notion for 
such relativistic dynamics in terms of the space and time presheaves depending upon a 
particle (locally defined). For a full-scale description of the space-time sheaf as a 
measuring device of a particle, see the forthcoming [17]. However, further study is 
needed to develop the t-topos theory to treat more applications. The development of t­
topos methods is still at the early stage. The t-topos aspect of the time delay effect, for 
example near a black hole, is yet to be formulated. In the near future, our plan is to 
investigate the t-topos theoretic interpretations of Hawking radiation and quantum 
tunneling. See our forthcoming papers, e.g., [17]. Our theory may belong to a hidden 
variable approach (with direct experimental applications) as indicated in [19]. 

A similarity between a back hole type singularity and a big bang type singularity is 
the concept of u-singularity, i.e., the categorical notion of a limit (inverse or direct). 
Namely, for a compatible pair of a presheaf and an object (generalized time period) of the 
t-site, a quantum fluctuation type singularity is described as limits of 
microdecompositions of the given presheaf and of micro coverings of the object of the t-
site. Meanwhile, a big bang type singularity is given as a limit of a linearly t-ordered 
sequence for such a compatible object of the t-site with an arbitrary fundamental 
presheaf. In Remark 3.1, we have considered that fundamental pairs may exist, but no 
linearly t-ordered time, and furthermore, the totally incompatible (non-reified) state of 



 
 

 
   

 

 
 

 
  

  
 
 

fundamental presheaves and fundamental objects of the t-site. We may call such states 
the ur-big bang of the 0th stage and the ur-big bang of (−1)st stage, respectively. The ur-big 
bang of stage (−1)st �is the “unmatched melting pot” of presheaves of t-topos and t-site 
objects without any compatible pairs. Notice that there are similarities between the 
singularity type of a big bang and ultra microcosm in the sense of the direct u-singularity 
in Remark 2.7. The difference is also clear as well. The inverse u-singularity is induced 
by a linearly t-ordered sequence, but the direct u-singularity is induced by the coverings. 
However, at the level of ur-big bang state of the 0th stage and the subplanck covering 
level, there is a similarity since the both cases are consisting of fundamental pairs without 
the usual space-time notion. Note also that some results from particle physics may tell us 
how many fundamental objects are in t-topos and t-site and in particular at the big bang. 
In order to make the t-topos theory into a quantitative theory, we may be able to use the 
so called the fundamental composition principle as in [2] and [3] for V defined for an 
operator in a Hilbert space H corresponding to a physical quantity. Namely, the following 
diagram consisting of the vertical morphism of Hilbert space H induced by a function 
from � ����real numbers to � 

H ⎯→⎯ �� � � � � � � ↓�����������↓ � 
H ⎯→⎯ � 

is commutative. See [2], [3], [10] for details. For the mathematical foundations for t­
topos theory, see the forthcoming [17]. In this paper, sheaf cohomology per se does not 
appear. However, sheaf cohomology via coverings is crucial for Penrose’s work as 
mentioned in Prologue. The papers [4] and [5] by Mallios and Rptis, De Rham 
cohomology, i.e., the hypercohomolgy with coefficient in the complex of sheaves of 
differential forms, plays an important role. The methods of sheaf cohomology also 
appears in [20]. Namely, in order to obtain the Veneziano amplitude, Volovich’s p-adic 
string theory requires the computation zeta function obtained from the 1st p-adic 
cohomology group of Fermat curve over a finite field in characteristic p. (See the 
references in [20].) More general treatments of cohomologies can be found in [9] and 
[14]. As for cohomologies of sheaves for physics, see the forthcoming [17]. 
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